Symaro™

Duct sensors
for relative humidity and temperature

- Operating voltage AC 24 V / DC 13.5...35 V
- Signal output DC 0...10 V / 4...20 mA for relative humidity
- Signal output DC 0...10 V / 4...20 mA / T1 / LG-Ni 1000 for temperature
- Measuring accuracy ±3 % r. h. within the comfort range
- Range of use –15…+60 °C / 0…95 % r. h. (non-condensing)

Use

The QFM21… duct sensors are for use in air ducts of ventilation and air conditioning plant for acquiring:
- The relative humidity and
- The temperature.

The sensors are used as:
- Control sensors in the supply or extract air
- Reference sensors, e.g. for shifting the dew point
- Limit sensors, e.g. in connection with steam humidifiers
- Limit sensors, e.g. for measured value indication or for connection to a building automation and control system
- Sensors for enthalpy and absolute humidity, together with SEZ220 (see Data Sheet N5146)
Type summary

<table>
<thead>
<tr>
<th>Type reference</th>
<th>Temperature measuring range</th>
<th>Temperature signal output</th>
<th>Humidity measuring range</th>
<th>Humidity signal output</th>
<th>Operating voltage</th>
</tr>
</thead>
<tbody>
<tr>
<td>QFM2100</td>
<td>None</td>
<td>None</td>
<td>0...100 % active, DC 0...10 V</td>
<td>DC 24 V or DC 13.5...35 V</td>
<td></td>
</tr>
<tr>
<td>QFM2101</td>
<td>None</td>
<td>None</td>
<td>0...100 % active, 4...20 mA</td>
<td>DC 13.5...35 V</td>
<td></td>
</tr>
<tr>
<td>QFM2120</td>
<td>−35...+50 °C</td>
<td>passive, LG-Ni 1000</td>
<td>0...100 % active, DC 0...10 V</td>
<td>AC 24 V or DC 13.5...35 V</td>
<td></td>
</tr>
<tr>
<td>QFM2140</td>
<td>−35...+50 °C</td>
<td>passive, T1 (PTC)</td>
<td>0...100 % active, DC 0...10 V</td>
<td>AC 24 V or DC 13.5...35 V</td>
<td></td>
</tr>
<tr>
<td>QFM2160</td>
<td>0...50 °C / −35...+35 °C</td>
<td>active, DC 0...10 V</td>
<td>0...100 % active, DC 0...10 V</td>
<td>AC 24 V or DC 13.5...35 V</td>
<td></td>
</tr>
<tr>
<td>QFM2171</td>
<td>0...50 °C / −35...+35 °C</td>
<td>active, 4...20 mA</td>
<td>0...100 % active, 4...20 mA</td>
<td>DC 13.5...35 V</td>
<td></td>
</tr>
</tbody>
</table>

Ordering and delivery

When ordering, please give name and type reference, e.g.:
Duct sensor QFM2120
The sensor is supplied with mounting flange and cable entry gland M16.

Equipment combinations

All systems and devices capable of acquiring and handling the sensor's DC 0...10 V, 4...20 mA, LG-Ni 1000 or T1 output signal.
When using the sensors for minimum or maximum selection, for averaging, or to calculate enthalpy, enthalpy difference, absolute humidity, and dewpoint, we recommend to use the SEZ220 signal converter (see Data Sheet N5146).

Function

Relative humidity

The sensor acquires the relative humidity in the air duct via its capacitive humidity sensing element whose electrical capacitance changes as a function of the relative humidity.
The electronic measuring circuit converts the sensor's signal to a continuous DC 0...10 V or 4...20 mA signal, which corresponds to 0...100 % r. h.

Temperature

The sensor acquires the temperature in the air duct via its sensing element whose electrical resistance changes as a function of the temperature.
Depending on the type of sensor this change in resistance is converted either to an active DC 0...10 V or 4...20 mA output signal corresponding to a temperature range of 0...50 °C, −35...+35 °C, or −40...+70 °C. The measuring range can be selected. The temperature is provided as a simulated passive LG-Ni 1000- or T1-output signal (≡ −35...50 °C) as an alternative to the active output signal.

Simulated passive output signal

The measuring current of systems/devices for acquiring the electrical resistance of the passive sensor differs greatly and impacts self-heating of the temperature sensing element at the end of the measuring tip. To compensate the impact, the passive output signal is simulated with an electronic circuit.
Sensing elements, simulated

LG-Ni 1000

Characteristic:

![Characteristic graph]

Legend

R Resistance value in Ohm

ϑ Temperature in degrees Celsius

Burden diagram

Output signal, terminal I1 / I2

![Burden diagram]

Mechanical design

The duct sensor consists of a housing, a printed circuit board, connection terminals, a mounting flange and an immersion rod having a measuring tip.

The 2-sectional housing comprises a base and a removable cover (snap-on design). The measuring circuit and the setting element are located on the printed circuit board inside the cover, the connection terminals on the base.

The sensing elements are located at the end of the measuring tip and protected by a filter cap.

Cable entry is made via the screwed cable gland M16 supplied with the sensor.

Immersion rod and housing are made of plastic and are rigidly connected.

The sensor is fitted with the mounting flange supplied with the sensor. The flange is to be placed over the immersion rod and then secured in accordance with the required immersion length.
The setting element is located inside the cover. It comprises 6 pins and a jumper. It is used to select the required measuring range and to activate the test function.

The different jumper settings have the following meaning:

- **For the passive temperature measuring range:**
 Jumper in the middle position (R2) = −35...+50 °C (factory setting)

- **For the active temperature measuring range:**
 Jumper in the left position (R1) = −35...+35 °C,
 Jumper in the middle position (R2) = 0...50 °C (factory setting)
 Jumper in the right position (R3) = −40...+70 °C

- **For activating the test function:**
 Jumper in the horizontal position: The values according to the table "Test function active" will be made available at the signal output.

Malfunction

- Should the temperature sensor become faulty a voltage of 0 V (4 mA) will be applied at signal output U2 (I2) or signal output BS-MS becomes high impedance (>1 MΩ) after 60 seconds, and the humidity signal at signal output U1 (I1) will reach 10 V (20 mA).

- Should the humidity sensor become faulty a voltage of 10 V (20 mA) will be applied at signal output U1 (I1) after 60 seconds, and the temperature signal will remain active.

Accessories

<table>
<thead>
<tr>
<th>Name</th>
<th>Type reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Filter cap (for replacement)</td>
<td>AQF3101</td>
</tr>
</tbody>
</table>

Engineering notes

A transformer for safety extra low-voltage (SELV) with separate windings for 100 % duty is required to power the sensor. When sizing and protecting the transformer, local safety regulations must be complied with.

When sizing the transformer, the power consumption of the duct sensor must be taken into consideration.

For correct wiring, refer to the Data Sheets of the devices with which the sensor is used.

The permissible cable lengths must be considered.

Cable routing and cable selection

It must be considered for routing of cables that the longer the cables run side by side and the smaller the distance between them, the greater electrical interference. Shielded cables must be used in environments with EMC problems.

Twisted pair cables are required for the secondary supply lines and the signal lines.

Note to QFM2171

Terminals G1(+) and I1(−) of the humidity output must always be connected to power, even if only terminals G2(+) and I2(−) of the temperature output are used!
Mounting notes

Location
Mount the sensor in the center of the duct wall. If used together with steam humidifiers, the minimum distance after the humidifier must be 3 m to max 10 m.
Fit the sensor in the extract air duct if the application involves dew point shifting.
Fit only the flange to the duct wall. The sensor is then inserted through the flange and engaged.

Caution!
- To ensure degree of protection IP 54, fit the sensor with the cable entry pointing downward.
- The sensing elements inside the measuring tip are sensitive to impact. Avoid any impact on mounting.

Mounting instructions
The mounting instructions are printed on the inside of the package of the device.

Commissioning notes

Check wiring before switching on power. The temperature measuring range must be selected on the sensor, if required.
Wiring and the output signals can be checked by making use of the test function (refer to "Mechanical design").

⚠️ We recommend not to use voltmeters or ohmmeters directly at the sensing element. In the case of the simulated passive output signals, measurements with commercially available meters cannot be made (measuring current too small).

Technical data

<table>
<thead>
<tr>
<th>Power supply</th>
<th>Operating voltage</th>
<th>AC 24 V ± 20 % or DC 13.5...35 V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency</td>
<td>50/60 Hz at AC 24 V</td>
<td></td>
</tr>
<tr>
<td>Power consumption</td>
<td>≤1 VA</td>
<td></td>
</tr>
<tr>
<td>Perm. cable lengths</td>
<td>See data sheet of the device handling the signal</td>
<td></td>
</tr>
<tr>
<td>Range of use</td>
<td>0…95 % r. h. (non-condensing)</td>
<td></td>
</tr>
<tr>
<td>Measuring range</td>
<td>0…100 % r. h.</td>
<td></td>
</tr>
<tr>
<td>Measuring accuracy at 23 °C and AC 24 V</td>
<td>±5 % r. h.</td>
<td></td>
</tr>
<tr>
<td>0…95 % r. h.</td>
<td>±3 %, r. h. typically</td>
<td></td>
</tr>
<tr>
<td>30…70 % r. h.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temperature dependency</td>
<td>≤0.1 % r. h./°C</td>
<td></td>
</tr>
<tr>
<td>Time constant at 0…50 °C and 10…80 % r.h.</td>
<td>< 20 s</td>
<td></td>
</tr>
<tr>
<td>Perm. air velocity</td>
<td>20 m/s</td>
<td></td>
</tr>
<tr>
<td>Output signal, linear (terminal U1)</td>
<td>DC 0…10 V ≤ 0…100 % r. h., max. ±1 mA</td>
<td></td>
</tr>
<tr>
<td>Output signal, linear (terminal I1) Burden</td>
<td>4…20 mA ≤ 0…100 % r. h.</td>
<td></td>
</tr>
<tr>
<td>Sensing element</td>
<td>NTC 10 kΩ</td>
<td></td>
</tr>
<tr>
<td>Measuring range</td>
<td>0…50 °C (R2 = factory setting), −35...+35 °C (R1) or −40...+70 °C (R3)</td>
<td></td>
</tr>
<tr>
<td>Measuring accuracy at AC 24 V in the range of 15…35 °C</td>
<td>±0.8 K</td>
<td></td>
</tr>
<tr>
<td>−35…+50 °C</td>
<td>±1 K</td>
<td></td>
</tr>
<tr>
<td>Time constant</td>
<td>< 3.5 min. in with 2 m/s moved air</td>
<td></td>
</tr>
<tr>
<td>Output signal, linear (terminal U2)</td>
<td>DC 0…10 V ≤ 0…50 °C /−35...+35 °C /−40...+70 °C max. ±1 mA</td>
<td></td>
</tr>
</tbody>
</table>
Output signal, linear (terminal I2) 4…20 mA \(\geq\) 0...50 °C / -35...+35 °C

Burden
See "Function"

Measuring range -35...+50 °C

Sensing element simulated, corresponding to
QFM2120 LG-Ni 1000
QFM2140 T1 (PTC)

Measuring accuracy at AC 24 V in the range of
15...35 °C ± 0.8 K
-35...+50 °C ± 1 K

Time constant < 3.5 min. in with 2 m/s moved air

Perm. measuring current with
QFM2120 1.18…4.21 mA
QFM2140 0.53…1.89 mA

Degree of protection of housing IP 54 as per IEC 60 529 in built-in state

Safety class III as per EN 60 730

Connection terminals for 1 × 2.5 mm² or 2 × 1.5 mm²

Cable entry gland (enclosed) M 16 x 1.5

IEC 60721-3-3

Class 3K5

−15...+60 °C

Humidity 0...95 % r. h. (non-condensing)

Class 3M2

Temperature (housing with electronics)

Mechanical conditions

Class 3M2

Temperature

Mechanical conditions

Class 2M2

Transport

Class 2K3

−25...+70 °C

Humidity <95 % r. h.

IEC 60721-3-2

Class 2M2

Temperature

IEC 60721-3-2

Class 2M2

Humidity

Materials and colors Base Polycarbonate, RAL 7001 (silver-grey)

Cover Polycarbonate, RAL 7035 (light-grey)

Immersion rod Polycarbonate, RAL 7001 (silver-grey)

Filter cap Polycarbonate, RAL 7001 (silver-grey)

Mounting flange PA66 – GF35 (black)

Cable entry gland PA, RAL 7035 (light-grey)

Sensor (complete assembly) Silicone-free

Packaging Corrugated cardboard

Product safety Automatic electrical controls for household and similar use EN 60 730-1

Electromagnetic compatibility Immunity EN 61000-6-1

Emissions EN 61000-6-3

CE conformity to EMC directive 2004/108/EC

 conformity to Australian EMC Framework Radio Communication Act 1992

Radio Interference Emission Standard AS/NZS 3548

 conformity 1) UL 873

Incl. packaging QFM21...

Approx. 0.18 kg

1) Does not apply to the QFM2160 duct sensor!
Connection terminals

G, G0 Operating voltage AC 24 V (SELV) or DC 13.5...35 V
G1, G2 Operating voltage DC 13.5...35 V
U1 Signal output DC 0...10 V for 0...100 % r. h.
U2 Signal output DC 0...10 V for temperature range 0...50 °C (R2 = factory setting),
 −35...+35 °C (R1) or −40...+70 °C (R3)
I1 Signal output 4…20 mA for 0...100 % r. h.
I2 Signal output 4…20 mA for temperature range 0...50 °C (R2 = factory setting),
 −35...+35 °C (R1) or −40...+70 °C (R3)
BS, MS Signal output LG-Ni 1000- or T1 for temperature range −35...+50 °C (passive, simulated);
 wires must not be interchanged

Note on connection terminals of the QFM2171:
Terminals G1(+) and I1(−) for the humidity output must always be connected to power, even if only the
temperature output G2(+) and I2(−) is used!
Drilling plan with (without) mounting flange

Dimensions in mm