Data sheet Automatic bypass control AVDO # **Application** AVDO is a self-acting constant flow control primarily used either to maintain minimum flow rates through e.g. a low-capacity gas boiler or to control the differential pressure in a central heating system. ## AVDO: - opens on rising differential pressure - has a setting range of 0.05 0.5 bar - is dimensioned for pressure stage PN 10, max. 120 °C - DN 15 and DN 20 - operates without impulse tubes On delivery valve housing is fit onto AVDO with one of the following fittings: internal socket thread, internal socket thread/nipple or external thread for compression fittings. # Ordering | Туре | Setting range,
bar | Connection | | | Code no. | |---------|-----------------------|--------------------------------|----------|--------------------------------|-----------| | | | Inlet | | Outlet | Code IIO. | | AVDO 15 | 0.05 - 0.5 | R _P 1/2 1) | † | R _P ½ 1) | 003L6002 | | AVDO 20 | | R _P 3/4 1) | | R _P 3/4 1) | 003L6007 | | AVDO 25 | | R _P 1 ¹⁾ | | R _P 1 ¹⁾ | 003L6012 | | AVDO 15 | 0.05 - 0.5 | $R_P \frac{1}{2} 1)$ | ₽ | R 1/2 1) | 003L6003 | | AVDO 20 | | $R_P \frac{3}{4} 1)$ | | R 3/4 1) | 003L6008 | | AVDO 25 | | R _P 1 ¹⁾ | | R 1 1) | 003L6013 | | AVDO 15 | 0.05 - 0.5 | G 3/4 A 2) | \Box | G 3/4 A 2) | 003L6020 | | AVDO 20 | | G1 A ²⁾ | | G1 A ²⁾ | 003L6025 | | AVDO 25 | | G 1¼ A ²⁾ | | G 1¼ A ²⁾ | 003L6030 | | AVDO 15 | 0.05 - 0.5 | R _P 1/2 1) | \$ 1 3 | R 1/2 1) | 003L6018 | | AVDO 20 | | R _P 3/4 1) | | R 3/4 1) | 003L6023 | | AVDO 25 | | R _P 1 ¹⁾ | | R 1 ¹⁾ | 003L6028 | ¹⁾ According to ISO 7/1 ## **Accessories** (supplied in boxes of 10) | Copper tube fittings | Code no. | | |----------------------|----------|---------| | AVDO 15 | Ø 16 x 1 | 13U0131 | | AVDO 13 | Ø 18 x 1 | 13U0132 | | AV/DO 20 | Ø 18 x 1 | 13U0134 | | AVDO 20 | Ø 22 x 1 | 13U0135 | | AVDO 25 | Ø 28 x 1 | 13U0140 | ²⁾ According to ISO 228/1 ## **Data Sheet** # **Automatic bypass control AVDO** ## **Technical data** # **Capacity** A = set opening pressure $\Delta_P = \Delta p$ for valve --- = Upper limit graph for recommended application area with almost noiseless installation. Measurement conditions according to ISO 3743. # Design ## Materials | 1. Setting handle | Pom-plast | |-------------------|--------------------| | 2. Base | Ms 58 | | 3. Spring guide | PPS plastic | | 4. Spring | Stainless steel | | 5. Valve cone | PPS plastic | | 6. Valve body | Ms 58, hot-pressed | | 7. Setting pin | Stainless steel | | O-rings | EPDM | # Installation 2 The valve body must be mounted with flow in direction of the cast-in arrow. #### Setting The control is set by turning the setting dial. AVDO has a setting scale on which the opening pressure in bar or mwg can be directly read. The differential pressures stated for a given setting are indicative. The scale gives the differential pressure across the AVDO when it just begins to open. # Sizing Example 1: Bypass control across heating system #### Given: - System, see fig. 1. - Insignificant pressure loss in pipe from boiler to bypass. - Pump characteristic, see fig. 2. - 0.15 bar system differential pressure at max. system load. #### Required: - Bypass circulation beginning at 0.15 bar pump pressure. - Min. 2.0 m³/h boiler circulation. #### Seek: - A constant flow control that opens concurrently with falling load across the system (closing radiator thermostats). - A constant flow control that ensures min. 2.0 m³/h boiler circulation at min. system load. # Solution: - A 2.0 m³/h flow corresponds to a 0.25 bar pump pressure. On closing radiator thermostats AVDO is to ensure min. 2.0 m³/h circulation at 0.25 bar differential pressure across AVDO. Choose AVDO 25 that provides 2.75 m³/h at 0.25 bar differential pressure across valve. Set AVDO on 0.15 bar required opening pressure. Example 2: Bypass control across circulation pump #### Given: - System, see fig. 3. - Pump characteristic, see fig. 4. #### Required: - Bypass circulation beginning at 0.1 bar pump pressure. - Max. system differential pressure at closed radiator thermostats must be limited to 0.25 bar. #### Seek: - A constant flow control that opens concurrently with falling load across the system (closing radiator thermostats). - A constant flow control that ensures max. system differential pressure not exceeding 0.25 bar at min. system load. #### Solution: The max. permissible differential pressure 0.25 bar across system corresponds to a 1.8 m³/h water volume (fig. 4). At min. load AVDO must ensure 1.8 m³/h pump bypass circulation. In this example AVDO 20 must be used - see "Capacity".- As circulation is not to begin before differential pressure across system has exceeded 0.1 bar, AVDO is set on 0.1 bar - see "Setting. #### **Dimensions** 2) According to ISO 228/1 Danfoss can accept no responsibility for possible errors in catalogues, brochures and other printed material. Danfoss reserves the right to alter its products without notice. This also applies to products already on order provided that such alterations can be made without subsequential changes being necessary in specifications already agreed. All trademarks in this material are property of the respective companies. Danfoss and the Danfoss logotype are trademarks of Danfoss A/S. All rights reserved. ¹⁾ According to ISO 7/1